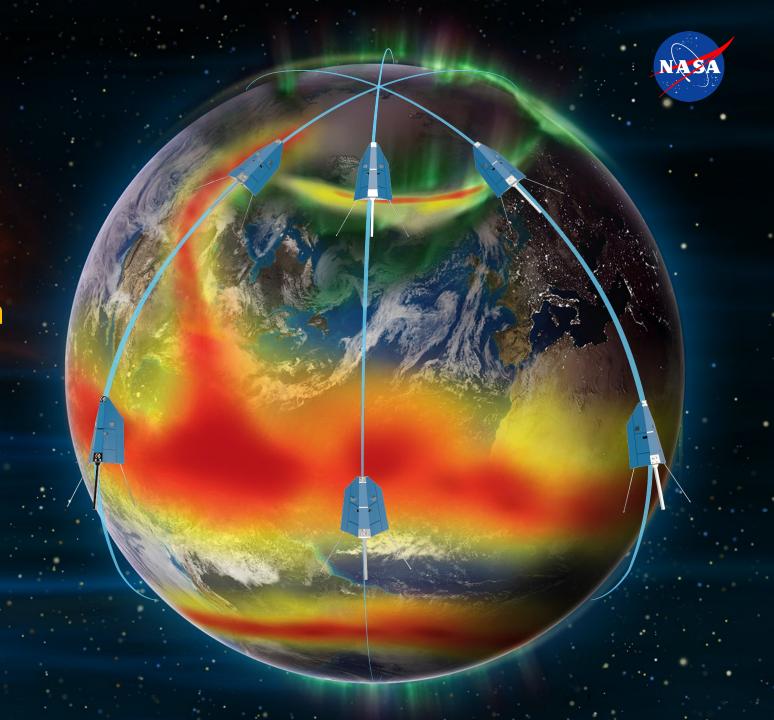
National Aeronautics and Space Administration


GDC Proposal Information Package

Robert Caffrey • GDC Payload Manager GDC Project Office • NASA GSFC

GDC Pre-Proposal Conference June 16, 2021

Overview

- Proposal Information Package (PIP) addresses technical and programmatic topics for GDC
 - GDC PEA policies described in the Overview of the GDC PEA
 - GDC PIP information will be incorporated into the evaluation described in Science Review and TMC Review
 - GDC Program Library contains the referenced documents
- PIP contains labeled requirements for investigations [GDC-PIP-<#>]
 - Compliance assessed in evaluation process, per GDC PEA Requirement P-1
- Topics summarized in this presentation:
 - Technical PIP requirements (21), see PIP Appendix B
 - Deliverables (69 CDRLs + 27 IMAR DIDs), see CDRL and IMAR documents.
 - Schedule (notional timeline included)
 - → GDC project structure (notional org chart included)

GDC Instrument Technical Overview

GDC Mission Drivers

- Pre-formulation work outlined a mission implementation that minimizes risk while retaining flexibility to maximize mission science return
- Project-level risks that drive requirements on instruments:
 - Constellation size and spacecraft bus to be finalized
 - Science payload composed of multiple providers, potential instrument cross-interference
 - e.g. electromagnetic/-static cleanliness, contamination
 - Science payload resource constraints, meeting science requirements within likely spacecraft resources
 - Instrument quantities per provider
 - Instrument performance verification (calibration)
- Requirements developed using information on potential spacecraft and instruments
 - Spacecraft: Combined internal GSFC work and external market survey, used common elements
 - Instruments: Flight heritage from successful missions, multiple options per payload component to avoid provider-specific bias

Note: Payload = collection of GDC instruments

Instrument Accommodation

- Accommodation risks relate to the integration & operations of the science payload
 - PIP identifies both instrument requirements and instrument challenges
- Accommodation requirements must be met by the proposals
 - Described in GDC PIP; captured by GDC-PIP-4.1, GDC-PIP-4.2
 - Identified in risk-rated findings in the evaluation process (see TMC Review)
- Based on the potential spacecraft options, accommodation challenges are potential issues that will be considered in the evaluation and selection process (see Overview of the GDC PEA)
 - Described in GDC PIP, Section 4.3 this list of challenges is non-exhaustive, captures major potential issues
 - Instruments need to a) fit on the spacecraft; b) operate where they fit; and c) ensure their operation doesn't impact the spacecraft or the other instrument's operations.
 - May be identified by non-risk-rated findings in the evaluation process (see TMC Review)
 - Assessed in the Pre-Selection Accommodation Study (see GDC PEA, Section 7.2.1)
 - Considered in the Selection Process (see Overview of the GDC PEA)

Instrument Accommodation

- Pre-Selection Accommodation Study will consider the following elements:
 - Instrument Accommodation Worksheet
 - Findings generated by TMC review
- Study will be conducted on the entire payload, not instrument-by-instrument

 Assess ability for the complete payload to be accommodated on a spacecraft

 Assess potential interference or contamination from one instrument to another

instrument to another		Maximum Expected Values (MEVs)		
		Per Instrument	Entire Payload	
Mass (Includes Sensor and Electronics)		7.7 kg	33.6 kg	
Volume (Includes Sensor and Electronics)		0.02 m^3	0.30 m^3	
Power (Average)		26.9 W	68.3 W	
Data Rate (Average)		10.5 kbps	25 kbps	
	Ram	0.12 m^2	0.90 m^2	
Deck Mounting	Nadir	0.06 m^2	1.40 m^2	
Area	Zenith	0.06 m^2	1.14 m^2	
	Anti-Ram	0.01 m^2	0.04 m^2	

Estimated Spacecraft Resources

Anti-Ram

GDC Instrument Deliverables Overview

Instrument Deliverables

- Investigations are responsible for deliverables described in the PIP, Instrument Mission Assurance Requirements (IMAR), & Contract Data Requirements List (CDRL) documents
 - IMAR Document Identifiers (DIDs): 27
 - CDRLs: 69
- Requirements were developed to reduce complexity and minimize risk
 - Clear division of responsibilities between investigations and Project Office
 - Testing requirements, as defined in the PIP
 - All Flight Hardware deliverables and qualification requirements identified
 - See Table 8-1 (next chart)

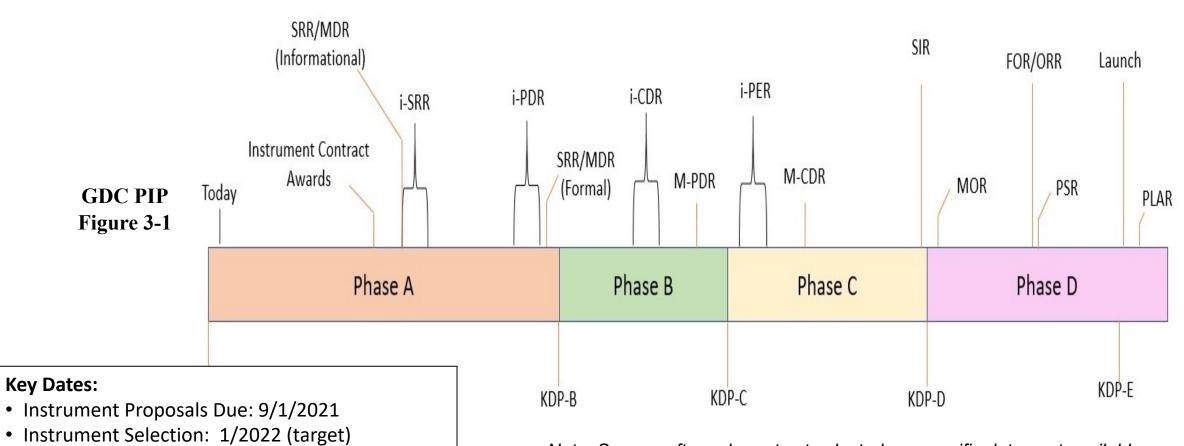
Instrument Deliverables

		Control Electronics Engineering Test Unit	Instrument Engineering Test Unit	Flight Units	Instrument Flight Spare
GDC PIP Table 8-1	Quantity	1	1	n	1
	Delivery Date	ICDR	ICDR	As stated in PEA	1 month after final flight unit delivery

- All Flight Units and spare flight units to be tested to proto-flight qualification levels prior to delivery
- n = number of instrument copies to be delivered for flight (excluding the spare)
- Note: PIP 8.1.3.4 Flight Spare Electronics: Build and test spare PCBs for complex boards and kit parts for simple boards.

Instrument Deliverables

- Instruments are currently expected to be integrated onto the GDC observatories as they are delivered (one/month, starting October 2025; see next section, PIP Sec. 8.3)
- Investigations are responsible for supporting the integration of delivered instruments, per PIP Section 8.4.3


GDC Instrument Schedule Overview

Notional Mission Development and Implementation Timeline

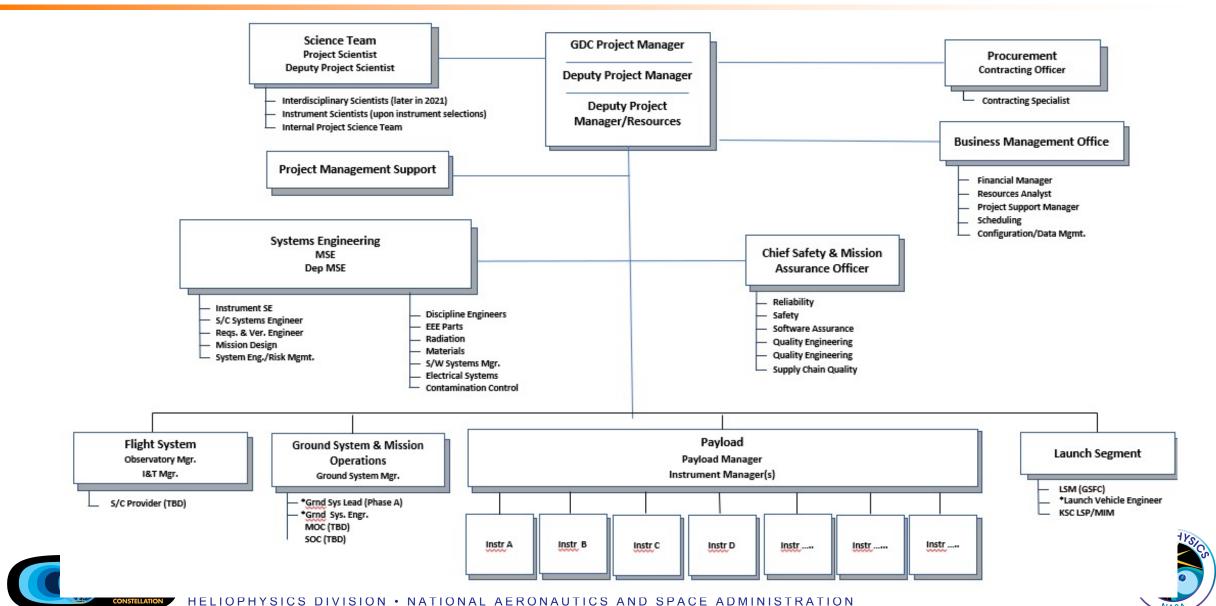
Note: Spacecraft vendor not yet selected, so specific dates not available.

• Launch Readiness Date: 9/2027

Notional Review/Meeting Schedule

GDC PIP Table 10-1

Event	Definition	Date	
Kick Off		~1 month after award	
IMRs	Instrument Monthly Reviews	Monthly	
TIM	Technical Interchange Meeting	As needed (at a minimum quarterly)	
Peer Reviews		As required	
ISRR	System Requirements Review	~4 months after award	
IPDR	Instrument Preliminary Design Review	~9 months after SRR	
ICDR	Instrument Critical Design Review	~9 months after PDR	
ITRR	Instrument Test Readiness Review	As needed, prior to planned test	
IPER	Pre-Environmental Review	Prior to instrument level environmental testing	
IPSR	Pre-Ship Review (~Oct 2025)	Prior to instrument delivery	


GDC Project Structure

GDC Project Organization Team

Questions?

Answers to previously submitted questions:

https://lws.larc.nasa.gov/gdc/faq.html
(Questions & Answers tab on SOMA's GDC Acquisition Homepage)

Questions accepted up to 21 days before the proposal due date [PEA Sec. 9] jared.s.leisner@nasa.gov

